站长资讯网
最全最丰富的资讯网站

redis讲解分布式数据库CAP原理

redis讲解分布式数据库CAP原理

推荐(免费):redis

传统的ACID分别是什么

A (Atomicity) 原子性
C (Consistency) 一致性
I (Isolation) 独立性
D (Durability) 持久性

关系型数据库遵循ACID规则,事务在英文中是transaction,和现实世界中的交易很类似,它有如下四个特性:

1、A (Atomicity) 原子性

  原子性很容易理解,也就是说事务里的所有操作要么全部做完,要么都不做,事务成功的条件是事务里的所有操作都成功,只要有一个操作失败,整个事务就失败,需要回滚。比如银行转账,从A账户转100元至B账户,分为两个步骤:1)从A账户取100元;2)存入100元至B账户。这两步要么一起完成,要么一起不完成,如果只完成第一步,第二步失败,钱会莫名其妙少了100元。

2、C (Consistency) 一致性

  一致性也比较容易理解,也就是说数据库要一直处于一致的状态事务的运行不会改变数据库原本的一致性约束

3、I (Isolation) 独立性

  所谓的独立性是指并发的事务之间不会互相影响如果一个事务要访问的数据正在被另外一个事务修改,只要另外一个事务未提交,它所访问的数据就不受未提交事务的影响。比如现有有个交易是从A账户转100元至B账户,在这个交易还未完成的情况下,如果此时B查询自己的账户,是看不到新增加的100元的

4、D (Durability) 持久性

持久性是指一旦事务提交后,它所做的修改将会永久的保存在数据库上,即使出现宕机也不会丢失。

CAP

C:Consistency(强一致性)
A:Availability(可用性)
P:Partition tolerance(分区容错性)或分布式容忍性

CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。
强一致性:比如数据上是什么就是什么。在分布式系统中的所有数据备份,在同一时刻是否同样的值。(等同于所有节点访问同一份最新的数据副本)
可用性:比如淘宝双十一不可能用不了。在集群中一部分节点故障后,集群整体是否还能响应客户端的读写请求。(对数据更新具备高可用性)
分区容错性:以实际效果而言,分区相当于对通信的时限要求。系统如果不能在时限内达成数据一致性,就意味着发生了分区的情况,必须就当前操作在C和A之间做出选择
举例子:比如淘宝的包包
对于强一致性,我们要求这个包包的点赞数是141,绝对不能错。必须精确的指导,但是在高并发的时候很难保证数据的统一
对于高可用性:可以有弱一致性,比如允许点赞数,浏览数的错误,但不能导致网站瘫痪。
所以大部分网站架构都使用AP。弱一致性+高可用性

Nosql来说,分区容忍性是必须实现的,分布式系统可能不在同城,比如淘宝,内容分发是离你最近的。淘宝服务器可能有服务器放在杭州,有在上海和苏州。
而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容忍性是我们必须需要实现的。所以我们只能在一致性和可用性之间进行权衡,没有NoSQL系统能同时保证这三点

CA 传统Oracle数据库
AP 大多数网站架构的选择
CP Redis、Mongodb
注意:分布式架构的时候必须做出取舍。

一致性和可用性之间取一个平衡。多余大多数web应用,其实并不需要强一致性。因此牺牲C换取P,这是目前分布式数据库产品的方向。

一致性与可用性的决择
  对于web2.0网站来说,关系数据库的很多主要特性却往往无用武之地
数据库事务一致性需求
  很多web实时系统并不要求严格的数据库事务,对读一致性的要求很低, 有些场合对写一致性要求并不高。允许实现最终一致性。
数据库的写实时性和读实时性需求
  对关系数据库来说,插入一条数据之后立刻查询,是肯定可以读出来这条数据的,但是对于很多web应用来说,并不要求这么高的实时性,比方说在微博发一条消息之后,过几秒乃至十几秒之后,我的订阅者才看到这条动态是完全可以接受的。
对复杂的SQL查询,特别是多表关联查询的需求
  任何大数据量的web系统,都非常忌讳多个大表的关联查询,以及复杂的数据分析类型的报表查询,特别是SNS类型的网站,从需求以及产品设计角 度,就避免了这种情况的产生。往往

赞(0)
分享到: 更多 (0)
网站地图   沪ICP备18035694号-2    沪公网安备31011702889846号