站长资讯网
最全最丰富的资讯网站

bootstrap算法是什么

bootstrap算法是什么

bootstrap算法是什么

Bootstrapping算法,指的就是利用有限的样本资料经由多次重复抽样,重新建立起足以代表母体样本分布的新样本。bootstrapping的运用基于很多统计学假设,因此采样的准确性会影响假设的成立与否。

统计学中,bootstrapping可以指依赖于重置随机抽样的一切试验。bootstrapping可以用于计算样本估计的准确性。对于一个采样,我们只能计算出某个统计量(例如均值)的一个取值,无法知道均值统计量的分布情况。但是通过自助法(自举法)我们可以模拟出均值统计量的近似分布。有了分布很多事情就可以做了(比如说有你推出的结果来进而推测实际总体的情况)。

bootstrapping方法的实现很简单,假设抽取的样本大小为n:

在原样本中有放回的抽样,抽取n次。每抽一次形成一个新的样本,重复操作,形成很多新样本,通过这些样本就可以计算出样本的一个分布。新样本的数量通常是1000-10000。如果计算成本很小,或者对精度要求比较高,就增加新样本的数量。

优点:简单易于操作。

缺点:bootstrapping的运用基于很多统计学假设,因此假设的成立与否会影响采样的准确性。

赞(0)
分享到: 更多 (0)
网站地图   沪ICP备18035694号-2    沪公网安备31011702889846号